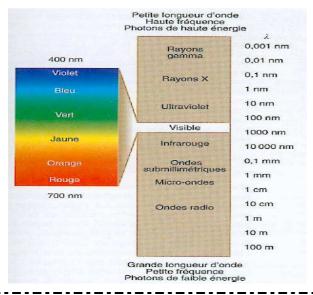
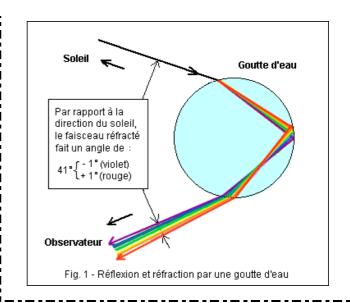


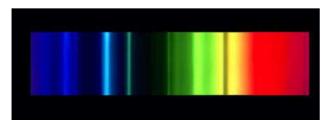
Nous observons un **spectre coloré, rouge, orange, jaune, vert, bleu, indigo et violet visible à l'œil.** La lumière blanche est décomposée par un prisme en **une infinité de couleurs** allant du rouge au violet. C'est un **spectre continu**.

Fréquences ×10 ¹⁴ (Hz)	4	5	5,2	5,7	6,4	6,8	7,5
Couleurs	Rouge	Orange	Jaune	Vert	Bleu	Indigo	Violet
Longueurs d'onde dans le vide (nm)	750	600		530	470		400

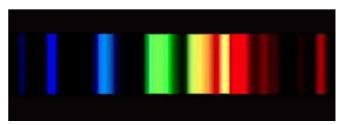

Les rayons sortant du prisme sont tous monochromatiques mais de fréquences et couleurs différentes. Les filtres ne servent qu'à isoler ceux d'une fréquence donnée.

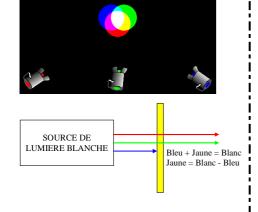

La longueur d'onde λ et la fréquence f sont liées, pour toute onde, par la relation c désignant la célérité (vitesse) de propagation de l'onde.

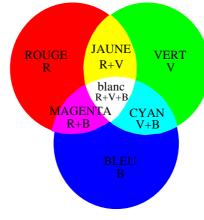
Pour une onde lumineuse, on a $c = 3 \times 10^8$ m/s. Soit

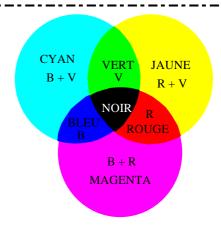

A l'aide de la formule, remplir les deux cases manquantes.

Remarque : La fréquence de la radiation ne varie pas

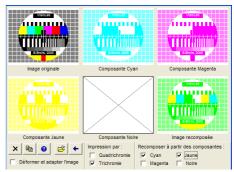


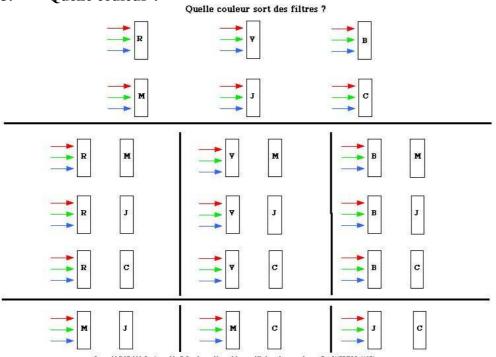



Lampe au sodium



Lampe au mercure





	Rouge	Orange	Jaune	Vert	Bleu	Indigo	Violet
λ (nm)	700	600	580	530	490	460	425
n (verre)	1,515	1,516	1,517	1,520	1,524	1,526	1,531
n (eau)	1,329	1,331	1,333	1,335	1,337	1,340	1,342

EXERCICES

- 1. Un rayonnement a une fréquence de 5,25.10¹⁴ Hz. Calculer sa longueur d'onde.
- **2. Un faisceau de radiation** R monochromatique a une longueur d'onde $\lambda = 530$ nm.
 - 2.1. Quelle est la couleur de cette radiation ?
 - 2.2. Quelle est sa couleur complémentaire ?
 - 2.3. Quelle couleur faut-il adjoindre pour former un triplet de couleurs primaires ?
 - 2.4. Calculez sa fréquence.
- 3. Quelle couleur ?

- 4. A l'entrée d'une salle, un panneau présente le logo « Jeunes Action ». Le panneau est éclairé par deux projecteurs émettant des lumières de même intensité. En lumière blanche, les carreaux non hachurés du damier apparaîssent noirs, la lettre J apparaît verte, la lettre A apparaît bleue, le fond apparait blanc.
- **4.1. Déterminer** de quelle couleur est éclairé le panneau quand un projecteur émet une lumière bleue et l'autre une lumière rouge.
- **4.2. Si un projecteur** émet une lumière bleue, déterminer la couleur de la lumière que doit émettre l'autre projecteur pour que le panneau soit éclairé en lumière cyan.
- **4.3. Indiquer**, en complétant le tableau, la couleur apparente de chaque partie du panneau selon la lumière qui l'éclaire.

Partie du panneau Éclairée en lumière	Carreau non hachuré du damier	Lettre J	Lettre A	Fond
Blanche	Noir	Verte	Bleue	Blanc
Bleue	Noir		Bleue	
Magenta	Noir	Noire		
Cyan			Bleue	Cyan